

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	:	Mr. Sandeep Chhillar (Theory & Practical)
Discipline	:	Mechanical Engineering
Semester	:	7 th
Subject	:	Mechanical Vibration (ME-409-F)
Lesson Plan Duration	:	15 Weeks (from Aug., 2020 to Nov., 2020)

** Work Load (Lecture/Practical) per week (in hours): Lectures-02, Practicals-00

Week	Theory		Practical		
	Lecture	Торіс	Practical	Торіс	
	Day	(including assignment/test)	day		
1^{st}	1^{st}	Importance of Study of Vibrations,		No Practical's	
		Classifications of Vibrations,			
		Free and Forced, Undamped and			
		Damped, Linear and Non-linear,			
		Deterministic and Random			
	2^{nd}	Harmonic Motion, Vector and			
		Complex Number Representations,			
		Definitions and Terminology,			
		Periodic functions			
2^{nd}	$3^{\rm rd}$	Harmonic Analysis and its numerical,			
		Fourier Series Expansion, its			
		numerical and 1 st Assignment			
	4^{th}	Single Degree of Freedom system, D-			
		Alembert's Principal			
$3^{\rm rd}$	5th	Energy Methods, Rayleigh's Method,			
		Application of these Methods			
	$6^{\rm th}$	Damped Free Vibrations,			
		Logarithmic Decrement			
4^{th}	7^{th}	Under Damping, Critical Damping,			
		Over Damping, Coulomb Damping.			

MERI College of Engineering and Technology (MERI - CET)

	-		
	$8^{\rm th}$	Related numerical and 2 nd	
		Assignment,	
		Forced Damped Harmonic Vibration	
		of Single	
5^{th}	9^{th}	Degree of Freedom Systems and	
		Checking of both Assignment	
		Rotating Unbalance, Rotor	
		Unbalance	
	10 th	Critical Speeds and Whirling of	
		Rotating Shafts and 3 rd Assignment	
$6^{\rm th}$	11^{th}	Support Motion, Vibration Isolation,	
		Energy Dissipated by Damping,	
		Equivalent	
	12^{th}	Viscous Camping, Structural	
		Damping Sharpness of Resonance,	
		Vibration Measuring Instruments and	
		4 th Assignment	
7^{th}	13 th	Transient Vibrations : Impulse	
		Excitation,	
		Arbitrary Excitation, Response to	
		Step Excitations	
	14^{th}	Base Excitation Solution by Laplace	
		Transforms,	
		Response Spectrum, Runge-Kutta	
		Method and 5 th Assignment	
8^{th}	15^{th}	Two Degrees of Freedom Systems :	
		Introduction to Multi-Degree of	
		Freedom Systems	
	16^{th}	Normal Mode	
th	th	Vibrations, Coordinate Coupling	
9 ^m	17 ^m	Principal Coordinates, Free	
		Vibrations in Terms of Initial	
	th	Conditions	
	18 th	Forced Harmonic Vibrations,	
th	th	Vibration Absorber	
10 th	19 th	Centrifugal Vibration Absorber,	
		Vibration Damper and 6 th	
	th	Assignment	
	20 ^m	Multi degrees of Freedom Systems	
		and Numerical Methods :	
th	et	Introduction, Influence Coefficients	
11 ^m	21 st	Stiffness Matrix, Flexibility Matrix	
	22^{na}	Natural Frequencies and Normal	
		Modes, Orthogonally of Normal	
		Modes	

MERI College of Engineering and Technology (MERI - CET)

	-			
12 th	23 rd	Dun Kerley's Equation, Method of		
		Matrix Iteration		
	24^{th}	The Holzer Type Problem, Geared		
		and Branched Systems, Beams and		
		8 th Assignment		
13 th	25 th	Vibration of Continuous System:		
		Vibrating String		
	26 th	Longitudinal Vibrations of Rod		
14^{th}	27 th	Torsional Vibrations of Rod		
	28^{th}	Lateral Vibrations of Beam and 9 th]	
		Assignment		